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Abstract. We extend the renormalized density fucntional theory (RDFT), which was proposed 
by Groot and Van der Eerden, by using the Percus condition, and apply this to hard-sphere 
fluids which have a hard repulsive potential. The low-density expansion is used to calculate 
the fourth virial coefficient and the second-order pair correlation function for hard-sphere 
fluids, in which it disagrees with the exact virial expansion of the system. We compare 
these results with those of the standard integral equations and other weighted-density 
approximation theory approaches to the theory of fluids. The extended RDFT also shows that 
this fails at low temperatures for systems whose intermolecular potential has an attractive 
part, as d o  other weighted-density approximations. 

1. Introduction 

Much theoretical work has recently concentrated on how to approximate the free-energy 
functional, and how to apply these approximations to actual physical phenomena, i.e. 
the equation of state, the freezing problems which is the first-order liquid-to-solid 
transition, interfacial problems, elastic properties of solids, and so on. Even though 
many methods for approximating the free-energy functional for an inhomogeneous 
system have been proposed, we can generally classify these into three groups. In the 
first group the free-energy functional for an inhomogeneous system is written as a 
perturbation of the free energy about a given uniform reference homogeneous system. 
In the second group of approximations (Tarazona 1985, Denton and Ashcroft 1989a, b) 
the free-energy functional is written as a function of an effective or weighted density 
which is itself a locally averaged functional of the local density. Several different methods 
of averaging have been proposed but all make use of some properties of a reference 
homogeneous state and a particular assumed weighted-density function. A third group 
of approximations (Groot 1987, Groot and Van der Eerden 1987) are based upon the 
free-energy functional expansion about a ‘coarse-grained’ density, where the weighting 
function is determined by the extrema1 condition with respect to a ‘coarse-grained’ 
density. These approximations also have to assume knowledge of a reference homo- 
geneous state. 

However, in the free-energy version of the weighted-density approximation (WDA), 
we have already proposed a method of extending the WDA theories to determine the 
equation of state of systems for a large class of intermolecular potentials (Jones and Kim 
1989, Kim and Jones 1989). Therefore, it is worthwhile to investigate its properties, 
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even though the renormalized density functional theory (RDFT) seems to be more 
complicated than the traditional methods. In section 2, we summarize the RDFT and 
show how to extend this theory by using the Percus condition which was used to derive 
the Percus-Yevick (PY) and hypernetted-chain (HNC) equations. We apply the extended 
RDFT theory to the hard-sphere system and obtain the fourth virial coefficient and the 
second-order pair distribution function. Finally we briefly discuss its properties and 
informal problem of the WDAS. 

2. Extension of the RDFT theory 

where G(r, s, po(r))  represents the two-point coupling, and q(po(r ) )  is the excess free 
energy per particle at density po(r). In equation (2.1), po(r) plays the role of a free 
variable. Making equation (2.1) stationary with respect to p o ( r ) ,  po(r) becomes 

(2.2) 

where G' is the derivative with respect to the second argument po(r) .  By taking the 
functional derivative with respect to the density functional, the weighting function 
w(r,  s, p ( r ) )  is given as 

w(r ,  s, po(r)> = Spo( r ) /Ms)  = G f ( 6  s, P 0 ( 4 / j  ds G ' ( 6  s, P O ( 4  (2.3) 

and also satisfies the normalization condition Jw(r ,  s, p ( r ) )  = 1. 

first functional derivative of equation (2.1) with respect to p ( r ) ,  
Together equations (2.1)-(2.3) constitute the basic equations of the RDFT. For the 

By taking the second functional derivative and imposing the reproduction of the bulk 
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direct correlation, the direct correlation function is given at p( r )  = po(r) = p ;  after some 
manipulation, 

(2.5) 

Integrating over r and using the normalization condition gives the compressibility sum 
rule €or uniform fluids: 

1 drc(*)(r, p )  = 2 1 dr  G(r ,  p )  + p J dr G’(r ,  p) .  

To extend this theory, we consider the Percus (1964) condition which was used to 
derive the PY and HNC equations. The Percus condition is simply the statement that there 
is an exact relationship between the pair correlation function g(r, t )  of the system with 
no external potential and the density distribution of the same system in an external 
potential U(.) = q ( r ,  t )  provided by a fixed particle at t :  

p(r)g(r9 t l l o  = ~(r) l~w=w.t~ (2.7) 

where the subscripts indicate that quantities on the left are evaluated in a zero external 
field while the local density on the right is evaluated in the external field u(r) = q ( r ,  t ) .  
From equations (2.4), (2.7) and the exact relation for the free-energy functional (Evans 
1979, Jones 1987) given by 

~ P F [ P l l @ m  = -Pu(r) + PP - 3P 1n (2.8) 

eliminating the chemical potential p between a homogeneous and an inhomogeneous 
state gives 

P d X  - 4 = -lng(x - t )  - V(P> - P V ’ ( P )  + V ( P ” ( X  - 4 )  

where A is the thermal de Broglie wavelength, and po(r - t )  is given by, from equation 
(2.21, 

po(r - t )  = p W ( T  - S, po(r - t ) ) g ( s  - t )  dt. (2.10) I 
On the other hand, we can easily obtain the relation between the excess free energy 
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q ( p )  and the two-point coupling G(r ,  p)  by using the following exact relation for the 
uniform fluids: 

(2.11) 

Then, from equations (2.6), (2.9) and the exact compressibility equation (Groot 1987), 
one obtains 

(2.12) 

Here, note that equation (2.12) is a very useful relation to simplify the extended RDFT 
and, in particular, to derive the second-order pair correlation function g2(r) of equation 
(2.15) in a low-density approximation. In addition we have the usual Ornstein-Zernike 
relation between d2)(r ,  p)  and g(r, p) :  

~ ( ' ) ( r  - t ,  p )  - [g(r - t )  -11 + p (2.13) 

Now the unknown functions W(p),  w(r ,  p)  (or G(r, p) ) ,  d2)(r ,  p)  andg(r, p )  must satisfy 
equations (2.3), (2.9), (2.10) and (2.13). 

Since it is very difficult to solve these equations generally, we consider a low-density 
expansion to investigate the properties of an extended RDFT as a simple application. 
Now, if we assume that the four unknown functions can be expanded in a power series 
in the density (Jones and Kim 1989), then we can readily show that the above equations 
uniquely determine all coefficients in the expansions for any intermolecular potential 
q ( r ) .  In this case, the extended RDFT also gives the correct virial expression for go(r) and 
gl(r), where go(r) and gl(r)  denote the first two terms in the density expansion of the 
pair correlation function g(r, p) :  

(2.14) 

However, the extended RDFT gives a different expression for g2(r), as do other free- 
energy theories and standard integral equations. After a lengthy but straightforward 
calculation, g2(r) becomes in terms of the usual Mayor graphs 

d s  [g(r - S) - ~ ] c ( ~ ) ( s  - t ,  p)  = 0. i 

g(., P I  = go(4 + Pgl ( r )  + p2g2(r) + p3g3(r) + . . .. 

gz(r)/go(r) = -(1/3&) (N 1: + 2 N  + / B3 + (2.15) 

where B3 is the third virial coefficient and is given in terms of the Mayor functions, i.e. 
f(r> = exP[-PP(r>l -1: 

B3 = -6 d r  d s  dtf(r - s)f(r - t)f(s - t ) .  I i l  (2.16) 

In table 1, we compare our results with those of the WDA (Tarazona 1985, Jones and 
Kim 1989), the modified weighted density approximation (MWDA) (Denton and Ascroft 
1989a, b, Kim and Jones 1989), the PY equation, the HNC equation, the YBG equation 
and the exact virial expansion. B4 is the formal virial coefficient of pressure and is 
computed both from the compressibility and from the pressure equation of state. For 
r 2 1, the extended RDmresults forg2(r)/go(r) give a reasonable result but are somewhat 
worse than those of any other theories at small r .  For the fourth virial coefficient B 4 ,  
computed by either the pressure or the compressibility methods, the extended RDFT 
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Table 1. Results for the hard-sphere fluids with unit diameter ( B 2  = 4,2/3): c. compressibility 
method; p ,  pressure method. 

B,/B: g,(O)/g,(O) g*(1)/&1(1) g2(2)/&?0(2) 

Exact? 0.2869 12.885 1.259 -0.407 
RDIT 0.2076(c) 3.000 1.201 -0.407 

WDA$ 0.2935(c) 13.269 1.266 -0.402 

M W D A ~  0.2492(c) 12.885 1.518 -0.407 

HNCt  0.2092(c) 16.998 1.953 -0.407 

P Y t  0.2969(c) 8.225 1.097 -0.407 

Y B G t  0.3424(c) 14.256 0.988 -0.407 

0.2738( p) 

0.2887( p) 

0.3460( p) 

0.4453( p) 

0.2500( p) 

0.2252( p) 

t Integral equation values are taken from Baker and Henderson (1976) and Ree eta1 (1966). 
$ Jones and Kim (1989). 
§ Kim and Jones (1989). 

results are much worse than the WDA result and somewhat worse than the PY equation. 
Judging either by agreement with the exact result or the consistency of the pressure and 
compressibility B,-values the extended RDFT is substantially less accurate than the WDA 
and somewhat less accurate than the PY equation. On the other hand, the extended RDFT 
theory also fails at low temperatures for systems whose intermolecular potential has an 
attractive part, as does the WDA theory, because B3 = 0 at a particular temperature 
(Baker and Henderson 1976). This suggests that there is some structure flaw, perhaps 
the assumed form of the free-energy functional (Percus 1988). Here we have two 
surprising results. The first is that the original RDFT gives a good result in the analysis of 
the density profile of hard-sphere fluids near a hard wall (Groot 1987, Groot and Van 
der Eerden 1987), but the extended RDFT (i.e. uniform fluids) does not do so. Therefore, 
we could think that the former result possibly comes from the use of an exact direct 
correlation function c(*)(r,  p )  as input. The second is that the extended RDFT result is less 
accurate than the WDA theory, but this is a very difficult problem to understand and 
further study is still needed in future. 

3. Conclusions 

In the previous section, we show that knowledge of the intermolecular potential puts 
constraints on the RDFT, which take the form of a small number of non-linear integral 
equations of unusual type and which completely determine the theories. In the extended 
RDFT, a low-density expansion is made, and we show that the extended RDR is sub- 
stantially less accurate than the WDA. The major problem of all weighted-density theories 
is that they are not applicable to systems whose intermolecular potentials have an 
attractive region. This suggests that there is some structure flaw as indicated by Percus 
(1988). 
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